Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Neuromuscul Dis ; 10(5): 797-812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37458043

RESUMO

BACKGROUND: GNE myopathy (GNEM) is a severe muscle disease caused by mutations in the UDP-GlcNAc-2-epimerase/ManNAc-6-kinase (GNE) gene, which encodes a bifunctional enzyme required for sialic acid (Sia) biosynthesis. OBJECTIVE: To develop assays to demonstrate the potency of AAV gene therapy vectors in making Sia and to define the dose required for replacement of endogenous mouse Gne gene expression with human GNE in skeletal muscles. METHODS: A MyoD-inducible Gne-deficient cell line, Lec3MyoDI, and a GNE-deficient human muscle cell line, were made and tested to define the potency of various AAV vectors to increase binding of Sia-specific lectins, including MAA and SNA. qPCR and qRT-PCR methods were used to quantify AAV biodistribution and GNE gene expression after intravenous delivery of AAV vectors designed with different promoters in wild-type mice. RESULTS: Lec3 cells showed a strong deficit in MAA binding, while GNE-/-MB135 cells did not. Overexpressing GNE in Lec3 and Lec3MyoDI cells by AAV infection stimulated MAA binding in a dose-dependent manner. Use of a constitutive promoter, CMV, showed higher induction of MAA binding than use of muscle-specific promoters (MCK, MHCK7). rAAVrh74.CMV.GNE stimulated human GNE expression in muscles at levels equivalent to endogenous mouse Gne at a dose of 1×1013vg/kg, while AAVs with muscle-specific promoters required higher doses. AAV biodistribution in skeletal muscles trended higher when CMV was used as the promoter, and this correlated with increased sialylation of its viral capsid. CONCLUSIONS: Lec3 and Lec3MyoDI cells work well to assay the potency of AAV vectors in making Sia. Systemic delivery of rAAVrh74.CMV.GNE can deliver GNE gene replacement to skeletal muscles at doses that do not overwhelm non-muscle tissues, suggesting that AAV vectors that drive constitutive organ expression could be used to treat GNEM.


Assuntos
Infecções por Citomegalovirus , Músculo Esquelético , Humanos , Camundongos , Animais , Distribuição Tecidual , Músculo Esquelético/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Terapia Genética , Infecções por Citomegalovirus/metabolismo
2.
Eur J Hum Genet ; 31(6): 663-673, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36935420

RESUMO

The major determinant of disease severity in Duchenne muscular dystrophy (DMD) or milder Becker muscular dystrophy (BMD) is whether the dystrophin gene (DMD) mutation truncates the mRNA reading frame or allows expression of a partially functional protein. However, even in the complete absence of dystrophin, variability in disease severity is observed, and candidate gene studies have implicated several genes as modifiers. Here we present the largest genome-wide search to date for loci influencing severity in N = 419 DMD patients. Availability of subjects for such studies is quite limited, leading to modest sample sizes, which present a challenge for GWAS design. We have therefore taken special steps to minimize heterogeneity within our dataset at the DMD locus itself, taking a novel approach to mutation classification to effectively exclude the possibility of residual dystrophin expression, and utilized statistical methods that are well adapted to smaller sample sizes, including the use of a novel linear regression-like residual for time to ambulatory loss and the application of evidential statistics for the GWAS approach. Finally, we applied an unbiased in silico pipeline, utilizing functional genomic datasets to explore the potential impact of the best supported SNPs. In all, we obtained eight SNPs (out of 1,385,356 total) with posterior probability of trait-marker association (PPLD) ≥ 0.4, representing six distinct loci. Our analysis prioritized likely non-coding SNP regulatory effects on six genes (ETAA1, PARD6G, GALNTL6, MAN1A1, ADAMTS19, and NCALD), each with plausibility as a DMD modifier. These results support both recurrent and potentially new pathways for intervention in the dystrophinopathies.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofina/metabolismo , Estudo de Associação Genômica Ampla , Éxons , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Gravidade do Paciente , Caminhada , Antígenos de Superfície
3.
Mol Ther Methods Clin Dev ; 27: 47-60, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36186954

RESUMO

In a phase 1/2, open-label dose escalation trial, we delivered rAAVrh74.MCK.GALGT2 (also B4GALNT2) bilaterally to the legs of two boys with Duchenne muscular dystrophy using intravascular limb infusion. Subject 1 (age 8.9 years at dosing) received 2.5 × 1013 vector genome (vg)/kg per leg (5 × 1013 vg/kg total) and subject 2 (age 6.9 years at dosing) received 5 × 1013 vg/kg per leg (1 × 1014 vg/kg total). No serious adverse events were observed. Muscle biopsy evaluated 3 or 4 months post treatment versus baseline showed evidence of GALGT2 gene expression and GALGT2-induced muscle cell glycosylation. Functionally, subject 1 showed a decline in 6-min walk test (6MWT) distance; an increase in time to run 100 m, and a decline in North Star Ambulatory Assessment (NSAA) score until ambulation was lost at 24 months. Subject 2, treated at a younger age and at a higher dose, demonstrated an improvement over 24 months in NSAA score (from 20 to 23 points), an increase in 6MWT distance (from 405 to 478 m), and only a minimal increase in 100 m time (45.6-48.4 s). These data suggest preliminary safety at a dose of 1 × 1014 vg/kg and functional stabilization in one patient.

4.
Mol Ther Methods Clin Dev ; 26: 413-426, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36092360

RESUMO

Lysosomal acid lipase deficiency (LAL-D) presents as one of two rare autosomal recessive diseases: Wolman disease (WD), a severe disorder presenting in infancy characterized by absent or very low LAL activity, and cholesteryl ester storage disease (CESD), a less severe, later onset disease form. Recent clinical studies have shown efficacy of enzyme replacement therapy for both forms of LAL-D; however, no gene therapy approach has yet been developed for clinical use. Here, we show that rscAAVrh74.miniCMV.LIPA gene therapy can significantly improve disease symptoms in the Lipa -/- mouse model of LAL-D. Treatment dramatically lowered hepatosplenomegaly, liver and spleen triglyceride and cholesterol levels, and serum expression of markers of liver damage. Measures of liver inflammation and fibrosis were also reduced. Treatment of young adult mice was more effective than treatment of neonates, and enzyme activity was elevated in serum, consistent with possible bystander effects. These results demonstrate that adeno associated virus (AAV)-mediated LIPA gene-replacement therapy may be a viable option to treat patients with LAL-D, particularly patients with CESD.

5.
J Neuromuscul Dis ; 9(1): 53-71, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34511508

RESUMO

BACKGROUND: GNE myopathy (GNEM) is a rare, adult-onset, inclusion body myopathy that results from mutations in the GNE gene. GNE encodes UDP-GlcNAc epimerase/ManNAc-6 kinase, a protein with two enzymatic activities that comprise the committed step in biosynthesis of sialic acid (SA), an essential glycan that appears on the terminal positions of many extracellular oligosaccharide chains. These GNE mutations can cause a reduction of SA in many tissues, although pathology is restricted to skeletal muscles through a poorly understood mechanism. OBJECTIVE: Despite recent advances in the field, it remains unclear which therapeutic avenue is most promising for the restoration of SA level in skeletal muscle affected by GNEM. Our objective was to assess dietary and gene therapy strategies for GNEM in Cmah-deficient GNED207VTgGne-/- mice, a model that allows for the visualization of orally delivered N-glycolylneuraminic acid (Neu5Gc), one of the two predominant SA forms in muscle. METHODS: Methods included in situ physiology studies of the tibialis anterior muscle, studies of ambulation and limb grip strength, and muscle staining using MAA, SNA, and anti-Neu5Gc antibody, along with qPCR, qRT-PCR, western blot, and HPLC studies to assess virally introduced DNA, GNE gene expression, GNE protein expression, and SA expression. RESULTS: We found that a diet enriched in Neu5Gc-containing glycoproteins had no impact on Neu5Gc immunostaining in muscles of GNEM model mice. Delivery of a single high dose oral Neu5Gc therapy, however, did increase Neu5Gc immunostaining, though to levels below those found in wild type mice. Delivery of a single dose of GNE gene therapy using a recombinant Adeno Associated Virus (rAAV) vector with a liver-specific or a muscle-specific promoter both caused increased muscle Neu5Gc immunostaining that exceeded that seen with single dose monosaccharide therapy. CONCLUSIONS: Our findings indicate that dietary loading of Neu5Gc-containing glycoproteins is not effective in increasing muscle Neu5Gc expression, while single dose oral Neu5Gc monosaccharide or GNE gene therapy are. Neu5Gc immunostaining, however, showed greater changes than did lectin staining or HPLC analysis. Taken together, these results suggest that Neu5Gc immunostaining may be more sensitive technique to follow SA expression than other more commonly used methods and that liver expression of GNE may contribute overall muscle SA content.


Assuntos
Dietoterapia , Miopatias Distais/terapia , Terapia Genética , Complexos Multienzimáticos/genética , Músculo Esquelético/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Animais , Modelos Animais de Doenças , Miopatias Distais/genética , Miopatias Distais/metabolismo , Humanos , Camundongos , Camundongos Transgênicos
6.
Am J Pathol ; 191(8): 1474-1486, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34294193

RESUMO

Humans cannot synthesize the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) because of an inactivating deletion in the cytidine-5'-monophospho-(CMP)-N-acetylneuraminic acid hydroxylase (CMAH) gene responsible for its synthesis. Human Neu5Gc deficiency can lead to development of anti-Neu5Gc serum antibodies, the levels of which can be affected by Neu5Gc-containing diets and by disease. Metabolic incorporation of dietary Neu5Gc into human tissues in the face of circulating antibodies against Neu5Gc-bearing glycans is thought to exacerbate inflammation-driven diseases like cancer and atherosclerosis. Probing of sera with sialoglycan arrays indicated that patients with Duchenne muscular dystrophy (DMD) had a threefold increase in overall anti-Neu5Gc antibody titer compared with age-matched controls. These antibodies recognized a broad spectrum of Neu5Gc-containing glycans. Human-like inactivation of the Cmah gene in mice is known to modulate severity in a variety of mouse models of human disease, including the X chromosome-linked muscular dystrophy (mdx) model for DMD. Cmah-/-mdx mice can be induced to develop anti-Neu5Gc-glycan antibodies as humans do. The presence of anti-Neu5Gc antibodies, in concert with induced Neu5Gc expression, correlated with increased severity of disease pathology in Cmah-/-mdx mice, including increased muscle fibrosis, expression of inflammatory markers in the heart, and decreased survival. These studies suggest that patients with DMD who harbor anti-Neu5Gc serum antibodies might exacerbate disease severity when they ingest Neu5Gc-rich foods, like red meats.


Assuntos
Autoanticorpos/sangue , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/patologia , Ácidos Neuramínicos/sangue , Ácidos Neuramínicos/imunologia , Animais , Autoanticorpos/imunologia , Autoantígenos/imunologia , Criança , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Distrofia Muscular de Duchenne/sangue
7.
Mol Ther Methods Clin Dev ; 21: 274-287, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33869655

RESUMO

Gene replacement for laminin-α2-deficient congenital muscular dystrophy 1A (MDC1A) is currently not possible using a single adeno-associated virus (AAV) vector due to the large size of the LAMA2 gene. LAMA2 encodes laminin-α2, a subunit of the trimeric laminin-211 extracellular matrix (ECM) protein that is the predominant laminin expressed in skeletal muscle. LAMA2 expression stabilizes skeletal muscle, in part by binding membrane receptors via its five globular (G) domains. We created a small, AAV-deliverable, micro-laminin gene therapy that expresses these G1-5 domains, LAMA2(G1-5), to test their therapeutic efficacy in the dyW mouse model for MDC1A. We also fused the heparin-binding (HB) domain from HB epidermal growth factor-like growth factor (HB-EGF) to LAMA2(G1-5) to test whether this would increase muscle ECM expression. dyW mice treated intravenously with rAAV9.CMV.HB-LAMA2(G1-5) showed increased muscle ECM expression of transgenic protein relative to mice treated with rAAV9.CMV.LAMA2(G1-5) and showed improved weight-normalized forelimb grip strength relative to untreated dyW mice. Additionally, dyW muscle fibers expressing either micro-laminin protein showed some measures of reduced pathology, although levels of muscle cell apoptosis and inflammation were not decreased. Although systemic expression of rAAV9.CMV.HB-LAMA2(G1-5) did not inhibit all disease phenotypes, these studies demonstrate the feasibility of using a micro-laminin gene therapy strategy to deliver gene replacement for MDC1A.

8.
PLoS One ; 16(3): e0248721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33770101

RESUMO

We have examined the effects of intravenous (IV) delivery of rAAVrh74.MHCK7.GALGT2 in the golden retriever muscular dystrophy (GRMD) model of Duchenne Muscular Dystrophy (DMD). After baseline testing, GRMD dogs were treated at 3 months of age and reassessed at 6 months. This 3-6 month age range is a period of rapid disease progression, thus offering a relatively short window to establish treatment efficacy. Measures analyzed included muscle AAV transduction, GALGT2 transgene expression, GALGT2-induced glycosylation, muscle pathology, and muscle function. A total of five dogs were treated, 4 at 2x1014vg/kg and one at 6x1014vgkg. The 2x1014vg/kg dose led to transduction of regions of the heart with 1-3 vector genomes (vg) per nucleus, while most skeletal muscles were transduced with 0.25-0.5vg/nucleus. GALGT2-induced glycosylation paralleled levels of myofiber vg transduction, with about 90% of cardiomyocytes having increased glycosylation versus 20-35% of all myofibers across the skeletal muscles tested. Conclusions from phenotypic testing were limited by the small number of dogs. Treated dogs had less pronounced fibrosis and overall lesion severity when compared to control groups, but surprisingly no significant changes in limb muscle function measures. GALGT2-treated skeletal muscle and heart had elevated levels of utrophin protein expression and GALGT2-induced expression of glycosylated α dystroglycan, providing further evidence of a treatment effect. Serum chemistry, hematology, and cardiac function measures were largely unchanged by treatment. Cumulatively, these data show that short-term intravenous treatment of GRMD dogs with rAAVrh74.MHCK7.GALGT2 at high doses can induce muscle glycosylation and utrophin expression and may be safe over a short 3-month interval, but that such treatments had only modest effects on muscle pathology and did not significantly improve muscle strength.


Assuntos
Doenças do Cão/terapia , Distrofina/genética , Terapia Genética , Glicosiltransferases/farmacologia , Distrofias Musculares/terapia , Distrofia Muscular de Duchenne/terapia , Animais , Modelos Animais de Doenças , Doenças do Cão/genética , Doenças do Cão/patologia , Cães , Distroglicanas/biossíntese , Distroglicanas/genética , Distrofina/biossíntese , Expressão Gênica/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Glicosiltransferases/genética , Humanos , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Distrofias Musculares/genética , Distrofias Musculares/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Utrofina/genética
9.
Eur J Hum Genet ; 27(10): 1569-1577, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31278392

RESUMO

Proteoglycans have a core polypeptide connected to glycosaminoglycans (GAGs) via a common tetrasaccharide linker region. Defects in enzymes that synthesize the linker result in a group of autosomal recessive conditions called "linkeropathies". Disease manifests with skeletal and connective tissue features, including short stature, hyperextensible skin, and joint hypermobility. We report a family with three affected pregnancies showing short limbs, cystic hygroma, and perinatal death. Two spontaneously aborted; one survived 1 day after term delivery, and had short limbs, bell-shaped thorax, 11 ribs, absent thumbs, and cleft palate. Exome sequencing of the proband and one affected fetus identified compound heterozygous missense variants, NM_007255.3: c.808C>T (p.(Arg270Cys)) and NM_007255.3: c.398A>G (p.(Gln133Arg)), in B4GALT7, a gene required for GAG linker biosynthesis. Homozygosity for p.(Arg270Cys), associated with partial loss of B4GALT7 function, causes Larsen of Reunion Island syndrome (LRS), however no previous studies have linked p.(Gln133Arg) to disease. The p.(Gln133Arg) and p.(Arg270Cys) variants were transfected into CHO pgsB-618 cells. High protein expression of p.(Gln133Arg) was found, with mislocalization, compared to p.(Arg270Cys) that had a normal Golgi-like pattern. The p.(Gln133Arg) had almost no enzyme activity and little production of heparan sulfate GAGs, while p.(Arg270Cys) only had 17% of wild-type activity. These findings expand the phenotype of B4GALT7-related linkeropathies to include lethal skeletal dysplasia due to more severe loss of function.


Assuntos
Galactosiltransferases/genética , Anormalidades Musculoesqueléticas/diagnóstico , Anormalidades Musculoesqueléticas/genética , Mutação , Fenótipo , Aborto Espontâneo , Linhagem Celular , Doenças do Tecido Conjuntivo/diagnóstico , Doenças do Tecido Conjuntivo/genética , Ativação Enzimática , Feminino , Galactosiltransferases/metabolismo , Estudos de Associação Genética , Humanos , Mutagênese Sítio-Dirigida , Gravidez , Radiografia , Síndrome , Sequenciamento do Exoma
10.
Mol Cell Biol ; 39(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31036568

RESUMO

GALGT2 (also B4GALNT2) encodes a glycosyltransferase that is normally confined to the neuromuscular and myotendinous junction in adult skeletal muscle. GALGT2 overexpression in muscle can inhibit muscular dystrophy in mouse models of the disease by inducing the overexpression of surrogate muscle proteins, including utrophin, agrin, laminins, and integrins. Despite its well-documented biological properties, little is known about the endogenous regulation of muscle GALGT2 expression. Here, we demonstrate that epidermal growth factor receptor (EGFR) ligands can activate the human GALGT2 promoter. Overexpression of one such ligand, soluble heparin-binding EGF-like growth factor (sHB-EGF), also stimulated mouse muscle Galgt2 gene expression and expression of GALGT2-inducible surrogate muscle genes. Deletion analysis of the GALGT2 promoter identified a 45-bp region containing a TFAP4-binding site that was required for sHB-EGF activation. sHB-EGF increased TFAP4 binding to this site in muscle cells and increased endogenous Tfap4 gene expression. sHB-EGF also increased muscle EGFR protein expression and activated EGFR-Akt signaling. sHB-EGF expression was concentrated at the neuromuscular junction, and Hbegf deletion reduced Galgt2-dependent synaptic glycosylation. Hbegf deletion also mimicked Galgt2-dependent neuromuscular and muscular dystrophy phenotypes. These data demonstrate that sHB-EGF is an endogenous regulator of muscle Galgt2 gene expression and can mimic Galgt2-dependent muscle phenotypes.


Assuntos
Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Músculo Esquelético/metabolismo , N-Acetilgalactosaminiltransferases/genética , Junção Neuromuscular/metabolismo , Animais , Sítios de Ligação , Células CHO , Linhagem Celular , Cricetulus , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glicosilação , Células HEK293 , Humanos , Masculino , Camundongos , N-Acetilgalactosaminiltransferases/química , N-Acetilgalactosaminiltransferases/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Mol Ther ; 27(3): 636-649, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30711447

RESUMO

Dilated cardiomyopathy is a common cause of death in patients with Duchenne muscular dystrophy (DMD). Gene therapies for DMD must, therefore, have a therapeutic impact in cardiac as well as skeletal muscles. Our previous studies have shown that GALGT2 overexpression in mdx skeletal muscles can prevent muscle damage. Here we have tested whether rAAVrh74.MCK.GALGT2 gene therapy in mdx cardiac muscle can prevent the loss of heart function. Treatment of mdx hearts with rAAVrh74.MCK.GALGT2 1 day after birth did not negatively alter hemodynamic function, tested at 3 months of age, and it prevented early left ventricular remodeling and expression of fibrotic gene markers. Intravenous treatment of mdx mice with rAAVrh74.MCK.GALGT2 at 2 months of age significantly improved stroke volume and cardiac output compared to mock-treated mice analyzed at 17 months, both at rest and after stimulation with dobutamine. rAAVrh74.MCK.GALGT2 treatment of mdx heart correlated with increased glycosylation of α-dystroglycan with the CT glycan and increased utrophin protein expression. These data provide the first demonstration that GALGT2 overexpression can inhibit the loss of cardiac function in the dystrophin-deficient heart and, thus, may benefit both cardiac and skeletal muscles in DMD patients.


Assuntos
Glicosiltransferases/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Animais , Modelos Animais de Doenças , Distrofina/metabolismo , Terapia Genética , Glicosiltransferases/genética , Coração/fisiologia , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/terapia , Utrofina/metabolismo
12.
Mol Ther Methods Clin Dev ; 15: 305-319, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31890730

RESUMO

rAAVrh74.MCK.GALGT2 is a surrogate gene therapy that inhibits muscular dystrophy in multiple animal models. Here, we report on a dose-response study of functional muscle GALGT2 expression as well as toxicity and biodistribution studies after systemic intravenous (i.v.) delivery of rAAVrh74.MCK.GALGT2. A dose of 4.3 × 1014vg/kg (measured with linear DNA standard) resulted in GALGT2-induced glycosylation in the majority of skeletal myofibers throughout the body and in almost all cardiomyocytes, while several lower doses also showed significant muscle glycosylation. No adverse clinical signs or treatment-dependent changes in tissue or organ pathology were noted at 1 or 3 months post-treatment. Blood cell and serum enzyme chemistry measures in treated mice were all within the normal range except for alkaline phosphatase (ALP) activity, which was elevated in serum but not in tissues. Some anti-rAAVrh74 capsid T cell responses were noted at 4 weeks post-treatment, but all such responses were not present at 12 weeks. Using intramuscular delivery, GALGT2-induced muscle glycosylation was increased in Cmah-deficient mice, which have a humanized sialoglycome, relative to wild-type mice, suggesting that use of mice may underestimate GALGT2 activity in human muscle. These data demonstrate safety and high transduction of muscles throughout the body plan with i.v. delivery of rAAVrh74.MCK.GALGT2.

13.
Mol Ther Methods Clin Dev ; 10: 89-104, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30073180

RESUMO

Recombinant adeno-associated virus (rAAV)rh74.MCK.GALGT2 is a muscle-specific gene therapy that is being developed to treat forms of muscular dystrophy. Here we report on an isolated limb infusion technique in a non-human primate model, where hindlimb blood flow is transiently isolated using balloon catheters to concentrate vector in targeted leg muscles. A bilateral dose of 2.5 × 1013 vector genomes (vg)/kg/limb was sufficient to induce GALGT2-induced glycosylation in 10%-60% of skeletal myofibers in all leg muscles examined. There was a 19-fold ± 6-fold average limb-wide increase in vector genomes per microgram genomic DNA at a bilateral dose of 2.5 × 1013 vg/kg/limb compared with a bilateral dose of 6 × 1012 vg/kg/limb. A unilateral dose of 6 × 1013 vg/kg/limb showed a 12- ± 3-fold increase in treated limb muscles compared to contralateral untreated limb muscles, which received vector only after release into the systemic circulation from the treated limb. Variability in AAV biodistribution between different segments of the same muscle was 125% ± 18% for any given dose, while variability between the same muscle for any given treatment dose was 45% ± 7%. These experiments demonstrate that treatment of muscles throughout the leg with rAAVrh74.MCK.GALGT2 can be accomplished safely using an isolated limb infusion technique, where balloon catheters transiently isolate the limb vasculature, but that intra- and inter-muscle transduction variability is a significant issue.

14.
Mol Cell Biol ; 37(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28265002

RESUMO

Sarcopenia, the loss of muscle mass and strength during normal aging, involves coordinate changes in skeletal myofibers and the cells that contact them, including satellite cells and motor neurons. Here we show that the protein O-fucosyltransferase 1 gene (Pofut1), which encodes a glycosyltransferase required for NotchR-mediated cell-cell signaling, has reduced expression in aging skeletal muscle. Moreover, premature postnatal deletion of Pofut1 in skeletal myofibers can induce aging-related phenotypes in cis within skeletal myofibers and in trans within satellite cells and within motor neurons via the neuromuscular junction. Changed phenotypes include reduced skeletal muscle size and strength, decreased myofiber size, increased slow fiber (type 1) density, increased muscle degeneration and regeneration in aged muscles, decreased satellite cell self-renewal and regenerative potential, and increased neuromuscular fragmentation and occasional denervation. Pofut1 deletion in skeletal myofibers reduced NotchR signaling in young adult muscles, but this effect was lost with age. Increasing muscle NotchR signaling also reduced muscle size. Gene expression studies point to regulation of cell cycle genes, muscle myosins, NotchR and Wnt pathway genes, and connective tissue growth factor by Pofut1 in skeletal muscle, with additional effects on α dystroglycan glycosylation.


Assuntos
Envelhecimento/fisiologia , Fucosiltransferases/fisiologia , Neurônios Motores/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Junção Neuromuscular/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/citologia , Fibras Musculares Esqueléticas/citologia , Junção Neuromuscular/patologia , Fenótipo , Receptores Notch/metabolismo , Sarcopenia/etiologia , Sarcopenia/metabolismo , Sarcopenia/patologia , Células Satélites de Músculo Esquelético/citologia , Transdução de Sinais
15.
Hum Gene Ther ; 28(6): 493-509, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28345428

RESUMO

Use of adeno-associated virus (AAV) to transduce genes into skeletal muscles can be associated with T-cell responses to viral capsid and/or to transgenic protein. Intramuscular mononuclear cell infiltrates primarily consisting of CD8+ T cells and also containing FOXP3+ regulatory T cells were present in rhesus macaque skeletal muscle treated with rAAVrh74.MCK.GALGT2 by vascular delivery. Administration of oral prednisone prior to AAV gene delivery and throughout the study reduced such infiltrates by 60% at 24 weeks post AAV delivery compared with AAV-treated animals not receiving prednisone, regardless of the presence of pre-existing AAV serum antibodies at the time of treatment. The majority of CD8+ T cells in AAV-treated muscles expressed activated caspase 3 and programmed cell death protein 1 (PD1), suggesting ongoing programmed cell death. AAV-transduced skeletal muscles also had elevated expression of programmed death ligand 2 (PDL2) on skeletal myofibers, and this increase in expression extended to muscles where transgene was not overexpressed. These data demonstrate that prednisone can reduce the extent of intramuscular T-cell infiltrates in AAV-treated muscles, which may aid in achieving long-term transgene expression, as may the induction of PDL2 expression on skeletal myofibers to promote PD1-mediated programmed T-cell death.


Assuntos
Dependovirus/genética , Vetores Genéticos/imunologia , Imunossupressores/farmacologia , Distrofias Musculares/terapia , Prednisona/farmacologia , Proteína 2 Ligante de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/genética , Administração Oral , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Morte Celular , Dependovirus/imunologia , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/química , Imunidade Celular/efeitos dos fármacos , Injeções Intra-Arteriais , Injeções Intramusculares , Macaca mulatta , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Distrofias Musculares/genética , Distrofias Musculares/imunologia , Distrofias Musculares/patologia , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/agonistas , Proteína 2 Ligante de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/agonistas , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Transgenes
16.
J Immunol ; 198(6): 2366-2373, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28148732

RESUMO

Humans and chimpanzees are more sensitive to endotoxin than are mice or monkeys, but any underlying differences in inflammatory physiology have not been fully described or understood. We studied innate immune responses in Cmah-/- mice, emulating human loss of the gene encoding production of Neu5Gc, a major cell surface sialic acid. CMP-N-acetylneuraminic acid hydroxylase (CMAH) loss occurred ∼2-3 million years ago, after the common ancestor of humans and chimpanzees, perhaps contributing to speciation of the genus HomoCmah-/- mice manifested a decreased survival in endotoxemia following bacterial LPS injection. Macrophages from Cmah-/- mice secreted more inflammatory cytokines with LPS stimulation and showed more phagocytic activity. Macrophages and whole blood from Cmah-/- mice also killed bacteria more effectively. Metabolic reintroduction of Neu5Gc into Cmah-/- macrophages suppressed these differences. Cmah-/- mice also showed enhanced bacterial clearance during sublethal lung infection. Although monocytes and monocyte-derived macrophages from humans and chimpanzees exhibited marginal differences in LPS responses, human monocyte-derived macrophages killed Escherichia coli and ingested E. coli BioParticles better. Metabolic reintroduction of Neu5Gc into human macrophages suppressed these differences. Although multiple mechanisms are likely involved, one cause is altered expression of C/EBPß, a transcription factor affecting macrophage function. Loss of Neu5Gc in Homo likely had complex effects on immunity, providing greater capabilities to clear sublethal bacterial challenges, possibly at the cost of endotoxic shock risk. This trade-off may have provided a selective advantage when Homo transitioned to butchery using stone tools. The findings may also explain why the Cmah-/- state alters severity in mouse models of human disease.


Assuntos
Endotoxemia/imunologia , Escherichia coli/fisiologia , Inflamação/imunologia , Macrófagos/imunologia , Oxigenases de Função Mista/metabolismo , Animais , Bacteriólise/genética , Evolução Biológica , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Feminino , Humanos , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases de Função Mista/genética , Pan troglodytes , Fagocitose/genética
17.
Hum Gene Ther ; 28(9): 737-746, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28042944

RESUMO

Recombinant adeno-associated virus (rAAV) is a commonly used gene therapy vector for the delivery of therapeutic transgenes in a variety of human diseases, but pre-existing serum antibodies to viral capsid proteins can greatly inhibit rAAV transduction of tissues. Serum was assayed from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), inclusion body myositis (IBM), and GNE myopathy (GNE). These were compared to serum from otherwise normal human subjects to determine the extent of pre-existing serum antibodies to rAAVrh74, rAAV1, rAAV2, rAAV6, rAAV8, and rAAV9. In almost all cases, patients with measurable titers to one rAAV serotype showed titers to all other serotypes tested, with average titers to rAAV2 being highest in all instances. Twenty-six percent of all young normal subjects (<18 years old) had measurable rAAV titers to all serotypes tested, and this percentage increased to almost 50% in adult normal subjects (>18 years old). Fifty percent of all IBM and GNE patients also had antibody titers to all rAAV serotypes, while only 18% of DMD and 0% of BMD patients did. In addition, serum-naïve macaques treated systemically with rAAVrh74 could develop cross-reactive antibodies to all other serotypes tested at 24 weeks post treatment. These data demonstrate that most DMD and BMD patients should be amenable to vascular rAAV-mediated treatment without the concern of treatment blockage by pre-existing serum rAAV antibodies, and that serum antibodies to rAAVrh74 are no more common than those for rAAV6, rAAV8, or rAAV9.


Assuntos
Anticorpos/sangue , Dependovirus/imunologia , Miopatias Distais/sangue , Doenças Musculares/sangue , Distrofia Muscular de Duchenne/sangue , Miosite de Corpos de Inclusão/sangue , Adolescente , Adulto , Idoso , Animais , Criança , Pré-Escolar , Miopatias Distais/imunologia , Feminino , Terapia Genética/métodos , Vetores Genéticos/imunologia , Humanos , Macaca , Masculino , Pessoa de Meia-Idade , Doenças Musculares/imunologia , Distrofia Muscular de Duchenne/imunologia , Miosite de Corpos de Inclusão/imunologia , Sorogrupo , Transdução Genética/métodos , Transgenes/imunologia , Adulto Jovem
18.
J Neuromuscul Dis ; 3(2): 247-260, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27854211

RESUMO

BACKGROUND: Duchenne Muscular Dystrophy (DMD) is a severe, progressive, neuromuscular disorder of childhood. While a number of serum factors have been identified as potential biomarkers of DMD, none, as yet, are proteins within the dystrophin-associated glycoprotein (DAG) complex. OBJECTIVE: We have developed an immobilized serum ELISA assay to measure the expression of a constitutively cleaved and secreted component of the DAG complex, the N-terminal domain of α dystroglycan (αDG-N), and assayed relative expression in serum from muscular dystrophy patients and normal controls. METHODS: ELISAs of immobilized patient or mouse serum and Western blots were used to assess αDG-N expression. RESULTS: Immobilization of diluted serum on ELISA plates was important for this assay, as methods to measure serum αDG-N in solution were less robust. αDG-N ELISA signals were significantly reduced in DMD serum (27±3% decrease, n = 9, p < 0.001) relative to serum from otherwise normal controls (n = 38), and calculated serum αDG-N concentrations were reduced in DMD relative to normal (p < 0.01) and Becker Muscular Dystrophy (n = 11, p < 0.05) patient serum. By contrast, ELISA signals from patients with Inclusion Body Myositis were not different than normal (4±3% decrease, n = 8, p = 0.99). αDG-N serum signals were also significantly reduced in utrophin-deficient mdx mice as compared to mdx and wild type mice. CONCLUSIONS: Our results are the first demonstration of a component of the DAG complex as a potential serum biomarker in DMD. Such a serum measure could be further developed as a tool to help reflect overall muscle DAG complex expression or stability.


Assuntos
Distroglicanas/sangue , Distrofia Muscular de Duchenne/sangue , Animais , Biomarcadores/sangue , Western Blotting , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Distrofia Muscular Animal/sangue , Miosite de Corpos de Inclusão/sangue , Utrofina/genética
19.
Am J Pathol ; 186(9): 2429-48, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27561302

RESUMO

Overexpression of B4GALNT2 (previously GALGT2) inhibits the development of muscle pathology in mouse models of Duchenne muscular dystrophy, congenital muscular dystrophy 1A, and limb girdle muscular dystrophy 2D. In these models, muscle GALGT2 overexpression induces the glycosylation of α dystroglycan with the cytotoxic T cell glycan and increases the overexpression of dystrophin and laminin α2 surrogates known to inhibit disease. Here, we show that GALGT2 gene therapy significantly reduces muscle pathology in FKRP P448Lneo(-) mice, a model for limb girdle muscular dystrophy 2I. rAAVrh74.MCK.GALGT2-treated FKRP P448Lneo(-) muscles showed reduced levels of centrally nucleated myofibers, reduced variance, increased size of myofiber diameters, reduced myofiber immunoglobulin G uptake, and reduced muscle wasting at 3 and 6 months after treatment. GALGT2 overexpression in FKRP P448Lneo(-) muscles did not cause substantial glycosylation of α dystroglycan with the cytotoxic T cell glycan or increased expression of dystrophin and laminin α2 surrogates in mature skeletal myofibers, but it increased the number of embryonic myosin-positive regenerating myofibers. These data demonstrate that GALGT2 overexpression can reduce the extent of muscle pathology in FKRP mutant muscles, but that it may do so via a mechanism that differs from its ability to induce surrogate gene expression.


Assuntos
Terapia Genética/métodos , Glicosiltransferases/genética , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofia Muscular Animal/patologia , Animais , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Mutantes , Mutação , Pentosiltransferases , Proteínas/genética , Reação em Cadeia da Polimerase em Tempo Real , Transferases
20.
Am J Pathol ; 185(10): 2668-84, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26435413

RESUMO

Transgenic overexpression of Galgt2 (official name B4Galnt2) in skeletal muscle stimulates the glycosylation of α dystroglycan (αDG) and the up-regulation of laminin α2 and dystrophin surrogates known to inhibit muscle pathology in mouse models of congenital muscular dystrophy 1A and Duchenne muscular dystrophy. Skeletal muscle Galgt2 gene expression is also normally increased in the mdx mouse model of Duchenne muscular dystrophy compared with the wild-type mice. To assess whether this increased endogenous Galgt2 expression could affect disease, we quantified muscular dystrophy measures in mdx mice deleted for Galgt2 (Galgt2(-/-)mdx). Galgt2(-/-) mdx mice had increased heart and skeletal muscle pathology and inflammation, and also worsened cardiac function, relative to age-matched mdx mice. Deletion of Galgt2 in wild-type mice also slowed skeletal muscle growth in response to acute muscle injury. In each instance where Galgt2 expression was elevated (developing muscle, regenerating muscle, and dystrophic muscle), Galgt2-dependent glycosylation of αDG was also increased. Overexpression of Galgt2 failed to inhibit skeletal muscle pathology in dystroglycan-deficient muscles, in contrast to previous studies in dystrophin-deficient mdx muscles. This study demonstrates that Galgt2 gene expression and glycosylation of αDG are dynamically regulated in muscle and that endogenous Galgt2 gene expression can ameliorate the extent of muscle pathology, inflammation, and dysfunction in mdx mice.


Assuntos
Distrofina/metabolismo , Glicosiltransferases/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , Animais , Modelos Animais de Doenças , Distrofina/deficiência , Glicosiltransferases/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos Endogâmicos mdx , Camundongos Knockout , Desenvolvimento Muscular/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Miosite/patologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA